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Abstract

This project forecasts monthly neighbourhood safety in the Greater Toronto Area using the Major Crime
Indicators dataset. After cleaning temporal inconsistencies, we aggregate incident-level data into neighbourhood-
month records and construct a new target Neighbourhood Safety Index (NSI). We engineer spatial features

and temporal signals to further capture short-term dynamics. A range of models are evaluated: Ridge
Regression, Polynomial Regression, KNN, Fully-Connected Neural Networks, and LSTM networks. The
study compared these models’ predictive power based on RMSE and R Squared. The prediction provides

a data-driven foundation for safety-oriented resource planning across Toronto neighbourhoods.

1. Introduction

1.1 Problem Definition

In this project, we focus on the Regression Project Stream — Predicting Safety Indexr. Using the Major
Crime Indicators (MCI) dataset from the City of Toronto’s Open Data Portal, we aim to calculate
a Neighbourhood Safety Index and develop regression models that can predict neighbourhood safety one
month into the future. This work is motivated by the need for data-driven insights to help city planners and
residents better understand patterns of safety and potential risks across Toronto’s neighbourhoods.

1.2 Main Research Questions

The main research questions we investigate in this project are as follows:

1. How can we transform the raw Major Crime Indicators (MCI) dataset into a usable feature matrix
suitable for regression modeling?

2. Which regression models and hyperparameter configurations yield the best predictive performance for
forecasting the Safety Index one month ahead?

3. What types of features and feature engineering techniques most strongly influence model performance?

2. Data Preparation and Feature Representation

2.1 Data Cleaning

Before performing any feature extraction or modeling, we conducted a comprehensive data cleaning process
to ensure the integrity and consistency of the Major Crime Indicators (MCI) dataset. The following key
procedures were applied:

e Missing Value Handling: We detect missing values in OCC_YEAR, OCC_MONTH for some data points
(crime events). We filled them by extracting information from the fully populated 0CC_DATE column.
There’s no other missing value.

e Consistency Checks: To ensure data reliability, we verified data types, removed duplicate entries, and
checked for temporal inconsistencies (e.g., mismatched reporting and occurrence years). No additional
imputation required beyond reconstructing temporal items.



2.2

Data exploration with INSI

We noticed that each crime (data point) includes temporal, spatial, and crime category information. To
predict the futural safety level for specific neighborhoods, we treat the temporal and spatial info as inputs, and
incorporated crime category information by introducing the new target variable: NSI.

Severity Mapping and the Neighbourhood Safety Index (INSI):

We applied severity mapping to crime categories, and constructed the Neighbourhood Safety Index (NSI).

Instead of using raw crime counts (treating all offences equally), we assigned a relative severity weight to crime
type to reflect its social and physical impact. The mapping is summarized as follows:

Crime Type Severity Weight
Robbery
Assault

Break and Enter
Auto Theft
Theft Over
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These weights were chosen to reflect the relative seriousness of offences based on the Canadian Crime Severity
Index (CSI), which assigns weights according to the severity of crimes as determined by actual court sentencing
data. We analyzed the general trends in CSI weightings across multiple years to establish our relative weighting
scheme. Violent crimes such as Robbery and Assault were assigned higher weights, while property-related
crimes such as Theft Over received lower weights. This design ensures that the resulting NSI better represents
the perceived safety level of each neighbourhood, as it is grounded in the empirically-derived severity framework

used in official Canadian crime statistics.

For each neighbourhood n in a given month, a weighted crime score was computed as:

TotalCrimeScore,, = Z(countm x weight, ),
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where ¢ indexes the five crime categories. The resulting score was then normalized and inverted to obtain a
standardized Neighbourhood Safety Index (NSI) in the range [0, 1]:

TotalCrimeScore,, — MinScore

NSI, =1—
" MaxScore — MinScore

A higher NSI value indicates greater neighbourhood safety. This transformation converts raw crime data into
a continuous and interpretable target variable suitable for regression modeling. The following is some data

exploration based on NSI:

e Long-term Safety Trend (Fig. [la): The city-wide Neighbourhood Safety Index (NSI) exhibits a
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gradual decline from 2014 to 2020, indicating deteriorating safety conditions during this period. A brief
recovery is observed in 2021-2022, followed by a sharp drop in 2023. The spike in 2024 likely reflects
incomplete or early-year reporting rather than an actual improvement.

Seasonal Variation (Fig. : Winter demonstrates the highest NSI values, suggesting lower crime
severity, while Summer and Fall present noticeably reduced NSI levels. This aligns with criminology
literature showing that crime activity often increases during warmer months.

Feature Construction

Feature Aggregation: Incident-level records were aggregated using a three-key grouping (NEIGHBOURHOOD_158,
REPORT_YEAR, REPORT_MONTH), where each unique combination defines one monthly datapoint for a
neighbourhood.

Lagged Features: We constructed the Neighbourhood Safety Index (NSI) by normalizing monthly

crime severity scores, and created a lagged feature (Prev_Month NSI, NSI_3M_Avg) to capture temporal
dependencies in neighbourhood safety trends since classic ML models cannot learn the strong relation
between the current month and the recent ones.


https://www150.statcan.gc.ca/n1/en/pub/85-004-x/2009001/t008-eng.pdf?st=F-q5vkxD
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Figure 1: Exploratory visualizations of neighbourhood safety in Toronto.

Besides the key, these are the columns of our finalized dataset used for training:

1. NSI: target, as described above

TotalCrimeScore: feature, as described above

Crime_Count: feature, the number of crimes happened in each key
x, y: feature, the average location of crimes happend in each key

Prev_Month NSI: feature, NSI of the same neighbourhood but previous month
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NSI_3M_Avg: feature, average NSI of the same neighbourhood over the previous 3 months

3. Model Comparison Study

3.1 General Metric Selection

We evaluate model performance using two standard regression metrics: RMSE and R?. RMSE serves as our
primary metric because it measures prediction error in the original NSI scale and penalizes large deviations more
strongly. This is particularly important in a safety context, where substantial mispredictions (e.g., overstating
the safety of a high-risk neighbourhood) carry significant practical consequences.

In addition, we report the R? score to assess how much of the variation in NSI the model explains beyond
simple averaging. While RMSE reflects absolute predictive accuracy, R? provides a complementary view of the
model’s ability to capture underlying crime-related patterns. Together, they offer a balanced and interpretable
basis for comparing forecasting models in this study.

3.2 Linear Regression

Linear Regression serves as the baseline model in our study. It predicts NSI as a weighted sum of the input
features, providing a straightforward interpretation of how neighbourhood and temporal factors contribute to
safety. If more complex models fail to significantly outperform this baseline, it would suggest that NSI varies
in a predominantly linear manner and does not require nonlinear feature transformations. Check Tab. [2| for
the coefficients of our model.

We introduced regularization here because it helps reduce the potential overfit (brought by great great numbers
of categorical variables). Multicollinearity caused by lagged features could also be reduced. We performed a
grid search for hyperparameter alpha over Ridge Regression (L2 penalty). Not using Lasso because we don’t
want any feature to be removed. We tested multiple regularization strengths: « € {0.001,0.01,0.1,1.0}. Our
experiments showed that regularization term improved model performance than simple multi-linear regression.
The best-performing alpha is 0.01.



3.3 KNN Regression

K-Nearest Neighbours (KNN) Regression is a non-parametric learning method that predicts target values by
averaging the outcomes of the most similar observations in the feature space. We include this model in our
comparison study because it was the first non-linear model introduced in the course, is conceptually simple,
and generally performs well on regression tasks without requiring strong assumptions about data distribution.

We performed a comprehensive grid search over three hyperparameters: the number of neighbours k, the
weighting scheme, and the distance metric. The search spanned k = {1,3,5,...,49}, both weighting options
(uniform, distance), and two common metrics (euclidean, manhattan). Each configuration was trained
using the same train—test split, and its performance was evaluated and recorded. This exhaustive exploration
ensured that every combination was assessed rather than relying on heuristic parameter choices.

The tuning results demonstrate that k has the largest impact on model performance: very small values tend to
overfit local noise, while excessively large values oversmooth the NSI signal. The best-performing configuration
was obtained at k = 25, striking a balance between stability and responsiveness to neighbourhood patterns.
In contrast, variations in the weighting scheme and distance metric produced only marginal differences in
performance and did not materially alter the ranking of configurations. This confirms that selecting k = 25 is
both empirically justified and sufficient for achieving optimal KNN performance in our forecasting task. Check
Fig. [ for the visualization.

3.4 FNN

A Fully-Connected Neural Network (FNN) is one of the most powerful function-approximation tools among the
models we studied. Unlike linear and polynomial regression, an FNN can automatically learn useful patterns
from data without requiring manually designed feature interactions.

We conducted a grid search over two neural architecture hyperparameters: the hidden layer configuration
and the activation function. The tested architectures varied in depth and width (e.g., one to three layers
with 32-256 neurons per layer), while activation functions included relu, logistic (sigmoid), and tanh. For
each configuration, we trained a separate network using the same train—test split and evaluated performance
using R? and RMSE. This exhaustive evaluation ensured that model quality was determined by systematic
exploration rather than ad-hoc selection.

The comparative results show that deeper or wider architectures do not necessarily yield better performance;
instead, moderate capacity balances expressiveness and generalization. Among all configurations, a two-layer
network with (64, 32) neurons and a logistic activation achieved the best performance, obtaining the
highest R? and lowest RMSE. Other activations and larger networks did not yield consistent improvements
and sometimes degraded performance due to overfitting. These findings justify selecting the (64, 32) logistic
network as the optimal FNN configuration for NSI forecasting. Check Fig. [6] for the visualization.

3.5 LSTM Neural Network

We implemented a LSTM neural network to help us predict the NSI target feature of the next consecutive
month of a given 12 month sequence for a neighbourhood. The main modification to the “feed forward” is the
addition of the LSTM cells; it allows us to remember information over time via a hidden state vector and cell
state vector. We chose this model as we believe the relationship is not linear. Because the data is sequential
we decide to use a LSTM NN with an input length of 12, to represent a sequence of a year for a particular
neighbourhood, we use this context to predict the 13th month. We experiment with 2 LSTM layers and a fully
connected layer, and note our best results in the following hyperparameter tuning process.

As our input has 9 features our input size follows. Our output size is just 1 for the NSI. Then we just tune
the hidden vector size and number of layers. We use [32, 64, 128, 256] as our values for the hidden vector size.
At first we tried with a hidden size of 32, 64 time steps, but we found that increasing to 128 time steps gave
slightly better accuracy; this indicates that 128 time steps captures patterns that 64 cannot, 256 gave slightly



worse performance so we chose 128. For the number of layers we tested both 2 and 3 their performance were
similar with 2 layers having slightly better performance, this leads us to choose our hyperparameters.

4. Main Results

Table 1: Model Performance Comparison (Poly Reg & SARIMA in appendix)

Model RMSE R?

Linear Regression 0.0558 0.8143
Polynomial Regression (degree 2)  0.0560  0.8100
KNN 0.0561 0.8100
SARIMA 0.0568 —0.4963
FNN 0.0558 0.8139
LSTM 0.0527 0.8295

Linear Regression achieves the best RMSE (0.0558) while offering interpretability and computational effi-
ciency, making it ideal for operational deployment. LSTM attains the highest R? (0.8476) through superior
modeling of temporal dependencies, though at the cost of interpretability and computational overhead. KNN
and Polynomial Regression show moderate performance with no clear advantages. SARIMA explicitly captures
seasonality with excellent MAPE (2.41%), though its negative R? inadequately reflects time series performance.

We select LSTM as the primary model and Linear Regression as a complementary alternative. LSTM achieves
both the best RMSE (0.0527) and highest R? (0.8295), demonstrating superior predictive accuracy and ability
to capture complex temporal dependencies in NSI patterns. Its sophisticated sequential modeling makes it the
strongest performer overall. Linear Regression offers a close second with RMSE of 0.0558 and R2 of 0.8143,
providing the key advantage of interpretability—coefficients directly reveal feature impacts on NSI for action-
able policy insights. We recommend LSTM for applications prioritizing maximum predictive performance, and
Linear Regression when model transparency and computational efficiency are critical.

5. Future Work

First, we want to integrate the premise of the crime into our NSI, as this could encode additional information
about the overall crime of a neighbourhood (e.g. Apartment + Assult has weight 10 because of high danger
level). About LSTM NN, we would like to experiment with different combinations of features as well as
possibly using random features to try to furter maximize the performance of the LSTM NN. For SARIMA
model, currently we used the city-wide NSI to determine the hyperparameters of the model and implemented
the same model on all 158 sequences corresponding to 158 neighbourhoods. Instead, we can explore VARIMA
to train a single model fitting to 158 sequences.

6. Originality

Our approach differs from some other similar attempts in our use of the LSTM neural network. Kang and Kang
(2017) make use of a deep neural network to predict crime in a given location given the current conditions.
Our approach differs in our use of the LSTM and past 12 month sequence of both temporal and spatial data
to predict the crime of the next month.

In Kim et al. (2018), KNN regression is used to predict crime rates. In their approach they use very similar
features in computing the distance. However we find an average location of crimes in a neighbourhood and
use lagging features to help us find distances. This way we try to encode some sort of previous data about
the sequence in our KNN regression approach. Additionally we define the average x and y of crimes in a
neighbourhood in a month, which differs from the other approach, so closer neighbourhoods to the “wanted”
neighbourhood will help influence our prediction. Our R-squared was 0.75 and performed much better than
the other approach.



7. Appendix

7.1 Other Data Exploration
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Figure 2: Exploratory visualizations of neighbourhood safety in Toronto.

e Crime Category Distribution (Fig. : Assault constitutes the largest proportion of incidents,
far exceeding other categories such as Break and Enter or Auto Theft. Theft Over is comparatively
infrequent. This imbalance highlights the need for severity weighting rather than relying on raw incident
counts.

e Safety by Premise Type (Fig. : Crimes occurring outdoors and in apartment buildings correspond
to lower NSI values, indicating higher-risk environments. In contrast, educational institutions and transit
locations show comparatively higher safety scores. This variation supports the inclusion of contextual
features in the model design.

7.2 Other Models

7.2.1 Polynomial Regression

Polynomial Regression extends linear regression by introducing nonlinear transformations of the input features,
enabling the model to capture curved temporal patterns in NSI that a purely linear model cannot represent.
We include this model in our comparison study because it offers a lightweight way to introduce nonlinearity
without the complexity of neural models, while remaining interpretable and suitable for regression tasks.

We performed an exhaustive grid search over two hyperparameters: the polynomial degree and whether to
include interaction terms. We evaluated polynomial degrees d = {1,2,3,4,5,6,7} under both interaction
settings (True/False), training a separate model for each combination using the same train—test split and
recording its performance. All results were stored and visualized using RMSE and R? curves, ensuring that
the comparison reflects every configuration rather than a heuristic subset.

The tuning results show that performance improves when increasing the degree from d = 1 to d = 2, but
deteriorates for d > 3: RMSE rises and R? falls, indicating overfitting. Interaction terms provided no consistent
benefit and often worsened the results. By jointly selecting the configuration with the highest R? and the lowest
RMSE, we identified a second-degree polynomial without interaction terms as the optimal model. This confirms
that modest nonlinearity is sufficient for NSI prediction and that additional complexity harms generalization.
Check Fig. [3] for visualization.

7.2.2 ARIMA

SARIMA extends ARIMA by incorporating seasonal patterns, enabling the model to capture the 12-month
cyclical behavior in NSI. Unlike regression approaches requiring manual feature engineering, SARIMA automat-



Polynomial Regression RMSE vs Degree (interaction=False) Polynomial Regression R? vs Degree (interaction=False)
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Figure 3: Hypertuning for Polynomial Regression.

ically models temporal dependencies through autoregressive and moving average components while differencing
removes trends.

We evaluated five SARIMA configurations varying the order (p,d,q)(p, d, q) (p,d,q) and seasonal order
(P,D,Q,12) : (1,1,1) x (1,1,1,12),(2,1,2) x (1,1,1,12),(1,1,2) x (1,1,1,12), (0,1, 1) x (0,1,1,12), (1,1,0) x
(1,1,0,12). Each model used an 80-20 train-test split, and performance was assessed using AIC, BIC, and
MAPE.

The simplest configuration (0,1,1)x(0,1,1,12) achieved the lowest AIC (-527.62) and best test MAPE (2.41%),
outperforming more complex alternatives. Adding autoregressive terms increased AIC without improving
forecasts, indicating overfitting. The seasonal moving average term proved highly significant (p < 0.001), con-
firming the importance of 12-month patterns. This demonstrates that modest complexity with seasonal error
correction is sufficient for NSI prediction, and that additional parameters harm generalization. The prediction
of the city-wide NSI is the following Fig.

7.3 Other Figures For Justification of Hypertuning
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Figure 4: Hypertuning for KNN.



SARIMA(0, 1, 1)x(0, 1, 1, 12): Actual vs Predicted NSI
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Figure 6: Hypertunning for FNN Model



Table 2: Linear Regression Feature Coefficients (Top and Bottom 5)

Feature Coefficient
Intercept 3.334816
NSI_3M_Avg 0.503455
C(HOOD_158) [T.020] 0.162466
C(HOOD_158) [T.012] 0.159333

C(HOOD_158) [T.019] 0.155635

C(REPORT_MONTH) [T. 12] —0.000935

C(HOOD_158) [T.147] 0.000570
y 0.000003
X 0.000002
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