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Abstract

This project forecasts monthly neighbourhood safety in the Greater Toronto Area using the Major Crime

Indicators dataset. After cleaning temporal inconsistencies, we aggregate incident-level data into neighbourhood-

month records and construct a new target Neighbourhood Safety Index (NSI). We engineer spatial features

and temporal signals to further capture short-term dynamics. A range of models are evaluated: Ridge

Regression, Polynomial Regression, KNN, Fully-Connected Neural Networks, and LSTM networks. The

study compared these models’ predictive power based on RMSE and R Squared. The prediction provides

a data-driven foundation for safety-oriented resource planning across Toronto neighbourhoods.

1. Introduction

1.1 Problem Definition

In this project, we focus on the Regression Project Stream – Predicting Safety Index. Using the Major

Crime Indicators (MCI) dataset from the City of Toronto’s Open Data Portal, we aim to calculate

a Neighbourhood Safety Index and develop regression models that can predict neighbourhood safety one

month into the future. This work is motivated by the need for data-driven insights to help city planners and

residents better understand patterns of safety and potential risks across Toronto’s neighbourhoods.

1.2 Main Research Questions

The main research questions we investigate in this project are as follows:

1. How can we transform the raw Major Crime Indicators (MCI) dataset into a usable feature matrix

suitable for regression modeling?

2. Which regression models and hyperparameter configurations yield the best predictive performance for

forecasting the Safety Index one month ahead?

3. What types of features and feature engineering techniques most strongly influence model performance?

2. Data Preparation and Feature Representation

2.1 Data Cleaning

Before performing any feature extraction or modeling, we conducted a comprehensive data cleaning process

to ensure the integrity and consistency of the Major Crime Indicators (MCI) dataset. The following key

procedures were applied:

• Missing Value Handling: We detect missing values in OCC YEAR, OCC MONTH for some data points

(crime events). We filled them by extracting information from the fully populated OCC DATE column.

There’s no other missing value.

• Consistency Checks: To ensure data reliability, we verified data types, removed duplicate entries, and

checked for temporal inconsistencies (e.g., mismatched reporting and occurrence years). No additional

imputation required beyond reconstructing temporal items.
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2.2 Data exploration with NSI

We noticed that each crime (data point) includes temporal, spatial, and crime category information. To

predict the futural safety level for specific neighborhoods, we treat the temporal and spatial info as inputs, and

incorporated crime category information by introducing the new target variable: NSI.

Severity Mapping and the Neighbourhood Safety Index (NSI):

We applied severity mapping to crime categories, and constructed the Neighbourhood Safety Index (NSI).

Instead of using raw crime counts (treating all offences equally), we assigned a relative severity weight to crime

type to reflect its social and physical impact. The mapping is summarized as follows:

Crime Type Severity Weight

Robbery 5

Assault 4

Break and Enter 3

Auto Theft 2

Theft Over 1

These weights were chosen to reflect the relative seriousness of offences based on the Canadian Crime Severity

Index (CSI), which assigns weights according to the severity of crimes as determined by actual court sentencing

data. We analyzed the general trends in CSI weightings across multiple years to establish our relative weighting

scheme. Violent crimes such as Robbery and Assault were assigned higher weights, while property-related

crimes such as Theft Over received lower weights. This design ensures that the resulting NSI better represents

the perceived safety level of each neighbourhood, as it is grounded in the empirically-derived severity framework

used in official Canadian crime statistics.

For each neighbourhood n in a given month, a weighted crime score was computed as:

TotalCrimeScoren =
∑
i

(counti,n × weighti),

where i indexes the five crime categories. The resulting score was then normalized and inverted to obtain a

standardized Neighbourhood Safety Index (NSI) in the range [0, 1]:

NSIn = 1− TotalCrimeScoren −MinScore

MaxScore−MinScore
.

A higher NSI value indicates greater neighbourhood safety. This transformation converts raw crime data into

a continuous and interpretable target variable suitable for regression modeling. The following is some data

exploration based on NSI:

• Long-term Safety Trend (Fig. 1a): The city-wide Neighbourhood Safety Index (NSI) exhibits a

gradual decline from 2014 to 2020, indicating deteriorating safety conditions during this period. A brief

recovery is observed in 2021–2022, followed by a sharp drop in 2023. The spike in 2024 likely reflects

incomplete or early-year reporting rather than an actual improvement.

• Seasonal Variation (Fig. 1b): Winter demonstrates the highest NSI values, suggesting lower crime

severity, while Summer and Fall present noticeably reduced NSI levels. This aligns with criminology

literature showing that crime activity often increases during warmer months.

2.3 Feature Construction

• Feature Aggregation: Incident-level records were aggregated using a three-key grouping (NEIGHBOURHOOD 158,

REPORT YEAR, REPORT MONTH), where each unique combination defines one monthly datapoint for a

neighbourhood.

• Lagged Features: We constructed the Neighbourhood Safety Index (NSI) by normalizing monthly

crime severity scores, and created a lagged feature (Prev Month NSI, NSI 3M Avg) to capture temporal

dependencies in neighbourhood safety trends since classic ML models cannot learn the strong relation

between the current month and the recent ones.
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(a) NSI by Year (b) NSI by Season

Figure 1: Exploratory visualizations of neighbourhood safety in Toronto.

Besides the key, these are the columns of our finalized dataset used for training:

1. NSI: target, as described above

2. TotalCrimeScore: feature, as described above

3. Crime Count: feature, the number of crimes happened in each key

4. x, y: feature, the average location of crimes happend in each key

5. Prev Month NSI: feature, NSI of the same neighbourhood but previous month

6. NSI 3M Avg: feature, average NSI of the same neighbourhood over the previous 3 months

3. Model Comparison Study

3.1 General Metric Selection

We evaluate model performance using two standard regression metrics: RMSE and R2. RMSE serves as our

primary metric because it measures prediction error in the original NSI scale and penalizes large deviations more

strongly. This is particularly important in a safety context, where substantial mispredictions (e.g., overstating

the safety of a high-risk neighbourhood) carry significant practical consequences.

In addition, we report the R2 score to assess how much of the variation in NSI the model explains beyond

simple averaging. While RMSE reflects absolute predictive accuracy, R2 provides a complementary view of the

model’s ability to capture underlying crime-related patterns. Together, they offer a balanced and interpretable

basis for comparing forecasting models in this study.

3.2 Linear Regression

Linear Regression serves as the baseline model in our study. It predicts NSI as a weighted sum of the input

features, providing a straightforward interpretation of how neighbourhood and temporal factors contribute to

safety. If more complex models fail to significantly outperform this baseline, it would suggest that NSI varies

in a predominantly linear manner and does not require nonlinear feature transformations. Check Tab. 2 for

the coefficients of our model.

We introduced regularization here because it helps reduce the potential overfit (brought by great great numbers

of categorical variables). Multicollinearity caused by lagged features could also be reduced. We performed a

grid search for hyperparameter alpha over Ridge Regression (L2 penalty). Not using Lasso because we don’t

want any feature to be removed. We tested multiple regularization strengths: α ∈ {0.001, 0.01, 0.1, 1.0}. Our

experiments showed that regularization term improved model performance than simple multi-linear regression.

The best-performing alpha is 0.01.
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3.3 KNN Regression

K-Nearest Neighbours (KNN) Regression is a non-parametric learning method that predicts target values by

averaging the outcomes of the most similar observations in the feature space. We include this model in our

comparison study because it was the first non-linear model introduced in the course, is conceptually simple,

and generally performs well on regression tasks without requiring strong assumptions about data distribution.

We performed a comprehensive grid search over three hyperparameters: the number of neighbours k, the

weighting scheme, and the distance metric. The search spanned k = {1, 3, 5, . . . , 49}, both weighting options

(uniform, distance), and two common metrics (euclidean, manhattan). Each configuration was trained

using the same train–test split, and its performance was evaluated and recorded. This exhaustive exploration

ensured that every combination was assessed rather than relying on heuristic parameter choices.

The tuning results demonstrate that k has the largest impact on model performance: very small values tend to

overfit local noise, while excessively large values oversmooth the NSI signal. The best-performing configuration

was obtained at k = 25, striking a balance between stability and responsiveness to neighbourhood patterns.

In contrast, variations in the weighting scheme and distance metric produced only marginal differences in

performance and did not materially alter the ranking of configurations. This confirms that selecting k = 25 is

both empirically justified and sufficient for achieving optimal KNN performance in our forecasting task. Check

Fig. 4 for the visualization.

3.4 FNN

A Fully-Connected Neural Network (FNN) is one of the most powerful function-approximation tools among the

models we studied. Unlike linear and polynomial regression, an FNN can automatically learn useful patterns

from data without requiring manually designed feature interactions.

We conducted a grid search over two neural architecture hyperparameters: the hidden layer configuration

and the activation function. The tested architectures varied in depth and width (e.g., one to three layers

with 32–256 neurons per layer), while activation functions included relu, logistic (sigmoid), and tanh. For

each configuration, we trained a separate network using the same train–test split and evaluated performance

using R2 and RMSE. This exhaustive evaluation ensured that model quality was determined by systematic

exploration rather than ad-hoc selection.

The comparative results show that deeper or wider architectures do not necessarily yield better performance;

instead, moderate capacity balances expressiveness and generalization. Among all configurations, a two-layer

network with (64, 32) neurons and a logistic activation achieved the best performance, obtaining the

highest R2 and lowest RMSE. Other activations and larger networks did not yield consistent improvements

and sometimes degraded performance due to overfitting. These findings justify selecting the (64, 32) logistic

network as the optimal FNN configuration for NSI forecasting. Check Fig. 6 for the visualization.

3.5 LSTM Neural Network

We implemented a LSTM neural network to help us predict the NSI target feature of the next consecutive

month of a given 12 month sequence for a neighbourhood. The main modification to the “feed forward” is the

addition of the LSTM cells; it allows us to remember information over time via a hidden state vector and cell

state vector. We chose this model as we believe the relationship is not linear. Because the data is sequential

we decide to use a LSTM NN with an input length of 12, to represent a sequence of a year for a particular

neighbourhood, we use this context to predict the 13th month. We experiment with 2 LSTM layers and a fully

connected layer, and note our best results in the following hyperparameter tuning process.

As our input has 9 features our input size follows. Our output size is just 1 for the NSI. Then we just tune

the hidden vector size and number of layers. We use [32, 64, 128, 256] as our values for the hidden vector size.

At first we tried with a hidden size of 32, 64 time steps, but we found that increasing to 128 time steps gave

slightly better accuracy; this indicates that 128 time steps captures patterns that 64 cannot, 256 gave slightly

4



worse performance so we chose 128. For the number of layers we tested both 2 and 3 their performance were

similar with 2 layers having slightly better performance, this leads us to choose our hyperparameters.

4. Main Results

Table 1: Model Performance Comparison (Poly Reg & SARIMA in appendix)

Model RMSE R²
Linear Regression 0.0558 0.8143
Polynomial Regression (degree 2) 0.0560 0.8100
KNN 0.0561 0.8100
SARIMA 0.0568 −0.4963
FNN 0.0558 0.8139
LSTM 0.0527 0.8295

Linear Regression achieves the best RMSE (0.0558) while offering interpretability and computational effi-

ciency, making it ideal for operational deployment. LSTM attains the highest R² (0.8476) through superior

modeling of temporal dependencies, though at the cost of interpretability and computational overhead. KNN

and Polynomial Regression show moderate performance with no clear advantages. SARIMA explicitly captures

seasonality with excellent MAPE (2.41%), though its negative R² inadequately reflects time series performance.

We select LSTM as the primary model and Linear Regression as a complementary alternative. LSTM achieves

both the best RMSE (0.0527) and highest R² (0.8295), demonstrating superior predictive accuracy and ability

to capture complex temporal dependencies in NSI patterns. Its sophisticated sequential modeling makes it the

strongest performer overall. Linear Regression offers a close second with RMSE of 0.0558 and R² of 0.8143,

providing the key advantage of interpretability—coefficients directly reveal feature impacts on NSI for action-

able policy insights. We recommend LSTM for applications prioritizing maximum predictive performance, and

Linear Regression when model transparency and computational efficiency are critical.

5. Future Work

First, we want to integrate the premise of the crime into our NSI, as this could encode additional information

about the overall crime of a neighbourhood (e.g. Apartment + Assult has weight 10 because of high danger

level). About LSTM NN, we would like to experiment with different combinations of features as well as

possibly using random features to try to furter maximize the performance of the LSTM NN. For SARIMA

model, currently we used the city-wide NSI to determine the hyperparameters of the model and implemented

the same model on all 158 sequences corresponding to 158 neighbourhoods. Instead, we can explore VARIMA

to train a single model fitting to 158 sequences.

6. Originality

Our approach differs from some other similar attempts in our use of the LSTM neural network. Kang and Kang

(2017) make use of a deep neural network to predict crime in a given location given the current conditions.

Our approach differs in our use of the LSTM and past 12 month sequence of both temporal and spatial data

to predict the crime of the next month.

In Kim et al. (2018), KNN regression is used to predict crime rates. In their approach they use very similar

features in computing the distance. However we find an average location of crimes in a neighbourhood and

use lagging features to help us find distances. This way we try to encode some sort of previous data about

the sequence in our KNN regression approach. Additionally we define the average x and y of crimes in a

neighbourhood in a month, which differs from the other approach, so closer neighbourhoods to the “wanted”

neighbourhood will help influence our prediction. Our R-squared was 0.75 and performed much better than

the other approach.
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7. Appendix

7.1 Other Data Exploration

(a) Crime Category Distribution (b) NSI by Premise Type

Figure 2: Exploratory visualizations of neighbourhood safety in Toronto.

• Crime Category Distribution (Fig. 2a): Assault constitutes the largest proportion of incidents,

far exceeding other categories such as Break and Enter or Auto Theft. Theft Over is comparatively

infrequent. This imbalance highlights the need for severity weighting rather than relying on raw incident

counts.

• Safety by Premise Type (Fig. 2b): Crimes occurring outdoors and in apartment buildings correspond

to lower NSI values, indicating higher-risk environments. In contrast, educational institutions and transit

locations show comparatively higher safety scores. This variation supports the inclusion of contextual

features in the model design.

7.2 Other Models

7.2.1 Polynomial Regression

Polynomial Regression extends linear regression by introducing nonlinear transformations of the input features,

enabling the model to capture curved temporal patterns in NSI that a purely linear model cannot represent.

We include this model in our comparison study because it offers a lightweight way to introduce nonlinearity

without the complexity of neural models, while remaining interpretable and suitable for regression tasks.

We performed an exhaustive grid search over two hyperparameters: the polynomial degree and whether to

include interaction terms. We evaluated polynomial degrees d = {1, 2, 3, 4, 5, 6, 7} under both interaction

settings (True/False), training a separate model for each combination using the same train–test split and

recording its performance. All results were stored and visualized using RMSE and R2 curves, ensuring that

the comparison reflects every configuration rather than a heuristic subset.

The tuning results show that performance improves when increasing the degree from d = 1 to d = 2, but

deteriorates for d ≥ 3: RMSE rises and R2 falls, indicating overfitting. Interaction terms provided no consistent

benefit and often worsened the results. By jointly selecting the configuration with the highest R2 and the lowest

RMSE, we identified a second-degree polynomial without interaction terms as the optimal model. This confirms

that modest nonlinearity is sufficient for NSI prediction and that additional complexity harms generalization.

Check Fig. 3 for visualization.

7.2.2 ARIMA

SARIMA extends ARIMA by incorporating seasonal patterns, enabling the model to capture the 12-month

cyclical behavior in NSI. Unlike regression approaches requiring manual feature engineering, SARIMA automat-
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(a) Polynomial RMSE (b) Polynomial R2

Figure 3: Hypertuning for Polynomial Regression.

ically models temporal dependencies through autoregressive and moving average components while differencing

removes trends.

We evaluated five SARIMA configurations varying the order (p,d,q)(p, d, q) (p,d,q) and seasonal order

(P,D,Q, 12) : (1, 1, 1)× (1, 1, 1, 12), (2, 1, 2)× (1, 1, 1, 12), (1, 1, 2)× (1, 1, 1, 12), (0, 1, 1)× (0, 1, 1, 12), (1, 1, 0)×
(1, 1, 0, 12). Each model used an 80-20 train-test split, and performance was assessed using AIC, BIC, and

MAPE.

The simplest configuration (0,1,1)×(0,1,1,12) achieved the lowest AIC (-527.62) and best test MAPE (2.41%),

outperforming more complex alternatives. Adding autoregressive terms increased AIC without improving

forecasts, indicating overfitting. The seasonal moving average term proved highly significant (p < 0.001), con-

firming the importance of 12-month patterns. This demonstrates that modest complexity with seasonal error

correction is sufficient for NSI prediction, and that additional parameters harm generalization. The prediction

of the city-wide NSI is the following Fig. 5:

7.3 Other Figures For Justification of Hypertuning

(a) KNN RMSE (b) KNN R2

Figure 4: Hypertuning for KNN.
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(a) Predict vs Actual (Whole Serie)

(b) Predict vs Actual (Test Serie)

Figure 5: Prediction by SARIMA

Figure 6: Hypertunning for FNN Model
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Table 2: Linear Regression Feature Coefficients (Top and Bottom 5)

Feature Coefficient

Intercept 3.334816

NSI 3M Avg 0.503455

C(HOOD 158)[T.020] 0.162466

C(HOOD 158)[T.012] 0.159333

C(HOOD 158)[T.019] 0.155635
...

C(REPORT MONTH)[T.12] −0.000935

C(HOOD 158)[T.147] 0.000570

y 0.000003

x 0.000002
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